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In this paper we analyze the stability of a gyroscopic oscillator interacting with
a finite- and infinite-dimensional heat bath in both the classical and quantum
cases. We consider a finite gyroscopic oscillator model of a particle on a rotat-
ing disc and a particle in a magnetic field and we examine stability before and
after coupling to a heat bath. The heat bath is modelled in the finite-dimen-
sional setting by a system of independent oscillators with mass. It is shown that
if the oscillator is gyroscopically stable, coupling to a sufficiently massive heat
bath induces instability even in the finite-dimensional setting. The key mecha-
nism for instability in this paper is thus not induced by damping. The meaning
of these ideas in the quantum context is discussed. The model extends the exact
diagonalization analysis of an oscillator and field of Ford, Lewis, and O’Connell
to the gyroscopic setting. We also discuss the interesting role that damping of
Landau type plays in the infinite limit.
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1. INTRODUCTION

In this paper we investigate the stability properties of a gyroscopically
stabilized system interacting with a finite or infinite-dimensional heat bath.
As a standard model for a gyroscopic system, we consider a particle on a
rotating disc and a charged oscillator in a magnetic field.

A gyroscopically stabilized system is one that is unstable without
gyroscopic forces but becomes stable with the addition of these forces.



Infinitesimal dissipative perturbations are known to induce instability in
Hamiltonian systems that are gyroscopically stabilized; see ref. 5.

Since the origins of dissipation (e.g., friction, viscosity,...) lie in the
transfer of energy from one form (energy of one subsystem) to another
form (that of a second subsystem) of a larger conservative system, it is
natural to expect the analogue of the above destabilization phenomenon to
be present within the more fundamental context of conservative systems
which exhibit internal energy transfer. In refs. 12 and 13, we explore this
in the context of a gyroscopic oscillating mechanical system coupled to an
extended wave system (infinite string). Due to the coupling, motion within
the mechanical system generates waves which can be carried off to infinity.
Such radiation damping has been studied in models arising in the theory of
quantum resonances, ionization type problems and nonlinear waves; for
more detail see refs. 29–31, ref. 18, and references therein. There are many
interesting papers of course discussing the role of dissipation in quantum
systems and systems of quantum oscillators, for example, refs. 1, 7, 9, 10,
15, 16, 22, 24, and 33. We cannot begin to give a complete list here (and
indeed our focus here is the classical rather than quantum setting) but refer
the reader to the literature for other aspects of this problem.

We consider here two models of gyroscopically stabilized systems
(a particle stabilized either by rotation or a magnetic field). We show that
coupling to a finite (i.e., nonthermal) system of oscillators with sufficient
coupling strength induces instability. This result is quite striking in the
sense that one does not expect a finite reservoir to mimic dissipation and
indeed the key mechanism for instability in this paper in not dissipation.
We also however consider the infinite-dimensional limit. In this case dissi-
pation does play a role which we discuss. A graphical criterion is given for
determining the onset of instability.

We discuss briefly also the quantum setting where we show that while
a stable oscillator has positive energy bound states, a gyroscopically stable
oscillator has both positive and negative energy bound states. Coupling to
the bath with sufficient coupling strength induces unbound states in the
gyroscopically stable system.

Our analysis is for a model problem but there are interesting possible
applications to systems with similar geometry such as Penning traps which
are used to trap charged particles and obtain extremely precise measure-
ments of atomic quantities. (6)

Our analysis extends the heat bath analysis of ref. 11 to the
gyroscopic setting. We show here that there is a beautiful extension of their
graphical (intersection-theoretic) criterion for stability to a more complex
class of curves. A brief earlier version of some of these ideas is discussed in
ref. 4.
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In the final section of the paper we discuss gyroscopic oscillators
coupled to an infinite heat bath modelled by a string. We discuss in some
detail the infinite limit and show that this limit we get an additional mech-
anism for instability, which we elucidate in a manner analogous to the
study of Landau damping. This is related to the work on radiation induced
instability discussed in refs. 12 and 13. We also discuss other types of infi-
nite-dimensional coupling.

2. EXAMPLES OF CHETAEV SYSTEMS

In this section we discuss two physical realizations of gyroscopic
oscillators: firstly a planar oscillator on a rotating plate and secondly a
planar oscillator in a constant magnetic field.

Planar Oscillator on a Rotating Plate

One physical model of a gyroscopic system is a planar oscillator on a
plate rotating with angular velocity w (see Fig. 1). We write the Lagrangian
as the kinetic energy minus the potential energy,

L=1
2 ((ẋ − wy)2+(ẏ+wx)2) − 1

2 (ax2+by2). (2.1)

ω

Fig. 1. Rotating plate with springs.
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In the Hamiltonian setting we have

H=1
2 (p2

x+p2
y)+1

2 (ax2+by2)+Hw, (2.2)

where

Hw=w(px y − pyx) (2.3)

and the associate momenta are given by

px=
“L
“ẋ

=ẋ − wy

py=
“L
“ẏ

=ẏ+wx.

(2.4)

We obtain the equations of motion,

− ṗx=
“H
“x

=ax − wpy

− ṗy=
“H
“y

=by+wpx

ẋ=
“H
“px

=px+wy

ẏ=
“H
“py

=py − wx.

(2.5)

Thus we have the following dynamics,

ẍ − 2wẏ+(a − w2) x=0

ÿ+2wẋ+(b − w2) y=0.
(2.6)

We comment on this below.

Planar Oscillator in a Constant Magnetic Field

Another physical realization is the motion of a charged spherical pen-
dulum in a magnetic field whose linearization is that of a charged planar
oscillator in a magnetic field (see Fig. 2). We consider here the motion of
such an oscillator (for details of the full nonlinear system see, e.g., ref. 13).
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Fig. 2. Inverted spherical pendulum.

Let B be a divergence-free vector field. Let A be the vector potential,
B=N × A. Note if we choose B to be the constant magnetic field in the
direction normal to the plane of oscillation, the vector potential can be
chosen as A=1

2 B × q, where q=(x, y, 0)T is the position of the oscillator.
Assume a normalization where the oscillator has unit mass and unit

charge and that the speed of light is unity. The Lagrangian, L: TR2
Q R, is

defined by:

L(q, q̇)=1
2 ||q̇||2+A · q̇ − U(q)

=1
2 (ẋ2+ẏ2)+A · (x, y, 0)T − 1

2 (ax2+by2). (2.7)

Choosing B to be of constant strength B, normal to the plane of oscillation
we have,

L=1
2 (ẋ2+ẏ2) − 1

2 (ax2+by2)+1
2 B(xẏ − yẋ). (2.8)

The associated Hamiltonian, H: TgR2
Q R, is

H=pxẋ+pyẏ − L

=1
2 (p2

x+p2
y)+1

2 (ax2+by2)+HB,
(2.9)

where

HB=1
2 B(px y − pyx)+1

8 B2(x2+y2), (2.10)
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and the associated momenta are given by

px=
“L
“ẋ

=ẋ −
1
2

By

py=
“L
“ẏ

=ẏ+
1
2

Bx.

(2.11)

In the above notation, HB is the contribution of a magnetic field.
We obtain the equations of motion,

− ṗx=
“H
“x

=1a+
1
4

B22 x −
1
2

Bpy

− ṗy=
“H
“y

=1b+
1
4

B22 y+
1
2

Bpx

ẋ=
“H
“px

=px+
1
2

By

ẏ=
“H
“py

=py −
1
2

Bx.

(2.12)

This gives the dynamics

ẍ − Bẏ+ax=0

ÿ+Bẋ+by=0.
(2.13)

Remark 1. If a and b are both negative, the oscillator in a field
system is unstable for small B. However, if B2+a+b > 2 `ab, the oscilla-
tor stabilizes, i.e., the eigenvalues are on the imaginary axis—this is what is
referred to as gyroscopic stabilization. For further details see below and
ref. 5.

Remark 2. The rotating disc affects the oscillator differently from
a magnetic field—compare Eqs. (2.6) and (2.13). While the magnetic field
only adds q̇ terms, the rotating disc also adds additional q terms to the
dynamics. For Eqs. (2.13), we can see that in the case of a physically stable
oscillator with a, b > 0 for rotation rate w sufficiently large, the system
becomes only gyroscopically stable, i.e., the coefficients a − w2 and b − w2

are negative but the eigenvalues are on the imaginary axis due to the pres-
ence of gyroscopic terms.
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Remark 3. In either case above, if the system is gyroscopically
stable it can be shown that adding a small amount of dissipation to the
system renders it unstable (i.e., there are unstable eigenvalues). For a more
precise statement and generalizations see Section 3.

3. GYROSCOPIC SYSTEMS

We recall here some general properties of linear systems with gyros-
copic forces. The systems above are examples of such systems.

The general form of a gyroscopic system is

Mq̈+Sq̇+Vq=0, (3.1)

where q ¥ Rn, M is a positive-definite symmetric n × n matrix, S is skew,
and V is symmetric. As in ref. 5 we shall call this the Chetaev system (see
ref. 8).

We say the system is gyroscopically stable if for S=0 the origin is an
unstable equilibrium, but for S ] 0, the origin is a spectrally stable equilib-
rium (i.e., the eigenvalues of the linearized system have non-positive real
part). The matrix S is sometimes referred to as a magnetic term which
arises from charged oscillators in a magnetic field.

An important property of this system is that it is a normal form for
a simple mechanical system about a relative equilibrium which is given
modulo an abelian group. That is, it is the normal form for a system
defined on the cotangent bundle TQ of a configuration space Q where the
Lagrangian is given by kinetic minus potential energy. (We recall that a
point in TQ is a relative equilibrium with respect to the action of a group if
the dynamical orbit through that point remains in the group orbit.) One
can obtain a similar normal form in the case of a non-abelian group. (See
refs. 5 and 27.) The magnetic term naturally arises in the symplectic form
when investigating the quotient space. However, we can obtain the same
dynamics from a canonical symplectic form and an augmented Hamiltonian.
This can always be done by the momentum shifting lemma (see ref. 23).

If we include the magnetic terms in the symplectic form, the Hamiltonian,
H: TgQ Q R, of a gyroscopic system is the sum of the kinetic energy and
potential energy

H=1
2 pTM−1p+1

2 qTVq. (3.2)

The Poisson bracket is given by

{F, K}magnetic=
“F
“q i

“K
“pi

−
“K
“q i

“F
“pi

− S ij “F
“pi

“K
“pj

. (3.3)
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It also useful to write the system as a Hamiltonian system with respect
to the canonical bracket.

A simple method of seeing this is a follows:
We wish to write the system (3.1) as a Hamiltonian system with

canonical symplectic form

{F, K}canonical=
“F
“q i

“K
“pi

−
“K
“q i

“F
“pi

, (3.4)

and Hamiltonian

Hmagnetic=
1
2 pTM−1p+1

2 qT(V+W) q+pTXq.

Equating the resulting equations of motion with Eqs. (3.1) we see that the
skew matrix X and the symmetric matrix W are implicitly defined by

XM+MX=− S (3.5)

W=− XMX. (3.6)

Solving Eq. (3.5) for X, we explicitly have a change of variable from
a Hamiltonian system with magnetic terms in the symplectic form to a
Hamiltonian system with canonical symplectic form. It can in fact easily
be shown using the Fredholm Alternative (see ref. 13 for details), that
Eq. (3.5) has a solution for X.

Classically, the two representations of the Chetaev systems are equally
useful. However, the canonical bracket is preferable when quantizing the
mechanical system. (See refs. 2, 5, and 8 for further physical discussions.)

Stability of Chetaev Systems

In the sequel we investigate the stability of perturbed Chetaev systems,
but first we summarize the stability of unperturbed Chetaev systems. The
stability of the Chetaev system depends both on the signature of the bili-
near form associated with a quadratic Hamiltonian and also on the mag-
netic terms in the symplectic form. In particular, the magnetic terms can
stabilize gyroscopic systems with negative eigenvalues of V.

As for gyroscopic stability, the number of negative eigenvalues of the
quadratic form plays a crucial part as ref. 8 discusses and which we sum-
marize in the following proposition:

Proposition 3.1. Consider the canonical gyroscopic system Mq̈+
S q̇+Vq=0, where M is a symmetric positive definite matrix, S is a skew-
symmetric matrix, and V is a symmetric matrix:
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• If V has a odd number of negative eigenvalues (counting multi-
plicity) then the origin is an unstable equilibrium.

• If V has an even number of negative eigenvalues (counting multi-
plicity), we can choose S so that the origin is a spectrally stable equilib-
rium.

Proof. Consider the associated first order linear operator, L,

L=r 0 I

− M−1V − M−1S
s . (3.7)

Let p(l) be the characteristic polynomial of the matrix L and let l1,..., ln

be the eigenvalues of the matrix V.

p(0)=det L

=(−1)n det(−M−1V)

=det(M−1) D
n

i=1
l i. (3.8)

Suppose that V has an odd number of negative eigenvalues. Due to the
positive definiteness of M, we have p(0) < 0. We will show that p(l)
changes signs as l increases.

lim
l Q .

p(l)= lim
l Q .

det(L − lI)

= lim
l Q .

(−1)2n l2n+O(l2n − 1)

=.. (3.9)

Hence, if V has an odd number of negative eigenvalues (counting multi-
plicity) then the characteristic polynomial of L has a positive real root and
the origin cannot be gyroscopically stabilized.

Now to prove the second item, suppose that V has an even number of
negative eigenvalues (counting multiplicity). Stabilizing a pair of negative
eigen-directions at a time, gyroscopic stabilization for n=2 is possible
as shown in the introductory examples of Section 2. This completes the
proof. L

Gyroscopically stable systems exhibit interesting instability when per-
turbed by dissipative forces. Suppose now that V has at least one negative
eigenvalue. A key result of ref. 5 is that adding small dissipation always
yields instability. More precisely it is shown that
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Theorem 3.2. Under the above conditions, if we modify the general
Chetaev system by adding a small Rayleigh dissipation term,

Mq̈+(S+ER) q̇+Vq=0 (3.10)

for small E > 0, where R is symmetric and positive definite, then the per-
turbed linearized equations

ż=LEz,

where z=(q, p) are spectrally unstable, i.e., at least one pair of eigenvalues
of LE is in the right half plane.

This result builds on basic work of refs. 8, 14, and 32. We refer to this
as dissipation induced instability. Some of the radiation induced instabilities
that arise in the gyroscopic Lamb model are analogous to the dissipation
induced instability. We see that the Hamiltonian of a gyroscopically
stabilized Chetaev system is indefinite. In this case, Rayleigh dissipation
decreases the value of the Hamiltonian, but this does not bound the motion
of the Chetaev system. In particular, the Hamiltonian may decrease to
zero, while the displacement and velocities grow exponentially.

4. OSCILLATOR COUPLED TO A BATH

We now consider the gyroscopic oscillator coupled to a bath of
oscillators via an augmented Lagrangian or Hamiltonian,

L=L0+Lbath (4.1)

where

L0=1
2 (ẋ2+ẏ2) − 1

2 (ax2+by2)+1
2 B(xẏ − yẋ) (4.2)

Lbath= C
N

j=1

1
2 mj(ẋ2

j +ẏ2
j ) − 1

2 mjw
2
j ((xj − x)2+(yj − y)2). (4.3)

Similarly, the Hamiltonian can be augmented as,

H=H0+Hbath (4.4)

where

H0=1
2 (p2

x+p2
y)+1

2 (ax2+by2)+HB (4.5)

Hbath= C
N

j=1

1
2 mj(p2

xj
+p2

yj
)+1

2 mjw
2
j ((xj − x)2+(yj − y)2), (4.6)
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where HB is given by Eq. (2.10) and 0 < w1 < · · · < wN. For convenience
we define w−i=−wi. This model extends the model described by ref. 11 to
the gyroscopic setting. As discussed in that paper this model provides a
good physical realization of oscillator-bath coupling. For simplicity of the
computations here we restrict ourselves to the case a=b. Similar results
hold in the general case. We also restrict ourselves to the generic situation
(see the proof for comments on genericity) though again similar results
hold in the nongeneric setting.

The theorem below in fact generalizes the results of ref. 11 in a rather
beautiful fashion, leading to the study of a more complex intersection
problem.

We can show:

Theorem 4.1. Consider the system with Lagrangian (4.1) where
a=b and the equation

1w ±
1
2

B 22

−1a+
1
4

B22= C
N

j=1
mj

w2
j w2

w2 − w2
j

. (4.7)

Generically we have the following:
The oscillator is stable if there exists 4N+4 real frequencies w=Wi,

i=± 1,..., ± (2N+2) which are solutions to Eq. (4.7). Let W1 be the
smallest positive solution and let Wi be increasing with respect to the
index i.

More precisely we have

(i) In the case of instability of the oscillator H0 (a+1
4 B2 < 0), there

are only 4N real solutions. Additionally, there are 2 pairs of imaginary
solutions corresponding to instability.

(ii) In the case of strong stability of H0 (a > 0), there are 4N+4 real,
normal modes maintaining stability via coupling.

(iii) In the case of gyroscopic stability of H0 (a+1
4 B2 > 0), there are

two possibilities. The values of mj and wj determine which occurs:

(a) If W1 < w1, then there are 4N+4 real, normal modes (counting
multiplicities) corresponding to stability.

(b) If W1 > w1, then there are 4N real, normal modes and 2 pairs
of imaginary mode corresponding instability in the coupling. This case
occurs for large mj.
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Proof. The equations of motion are

ẍ − Bẏ+ax= C
N

j=1
mjw

2
j (xj − x) (4.8)

ÿ+Bẋ+by= C
N

j=1
mjw

2
j (yj − y) (4.9)

ẍj+w2
j xj=w2

j x (4.10)

ÿj+w2
j yj=w2

j y. (4.11)

We seek normal mode solutions of the form

x(t)=X0(w) e iwt; y(t)=Y0(w) e iwt (4.12)

xj(t)=Xj(w) e iwt; yj(t)=Yj(w) e iwt. (4.13)

The equations of motion for the normal modes become

(−w2+a) X0=iBwY0+ C
N

j=1
mjw

2
j (Xj − X0) (4.14)

(−w2+b) Y0=− iBwX0+ C
N

j=1
mjw

2
j (Yj − Y0) (4.15)

(−w2+w2
j ) Xj=w2

j X0 (4.16)

(−w2+w2
j ) Yj=w2

j Y0. (4.17)

Eliminating the bath coordinates, we have

(−w2+a) X0=iBwY0+ C
N

j=1
mj

w2
j w2

w2
j − w2 X0 (4.18)

(−w2+b) Y0=− iBwX0+ C
N

j=1
mj

w2
j w2

w2
j − w2 Y0. (4.19)

We wish to find nontrivial solution to the following linear equation

|w2 − a+ C
N

j=1
mj

w2
j w2

w2
j − w2 iBw

− iBw w2 − b+ C
N

j=1
mj

w2
j w2

w2
j − w2

} rX0

Y0

s=r0

0
s . (4.20)
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Hence, we have nontrivial normal mode solutions at the zeros of the function

f(w)=1w2 − a+ C
N

j=1
mj

w2
j w2

w2
j − w2

21w2 − b+ C
N

j=1
mj

w2
j w2

w2
j − w2

2− B2w2.
(4.21)

In the case where a=b, we have

1w ±
1
2

B 22

−1a+
1
4

B22= C
N

j=1
mj

w2
j w2

w2 − w2
j

. (4.22)

Generically Eq. (4.22) has 4N+4 distinct complex solutions corre-
sponding to intersections between the two parabolae on the left hand side
and the curve on the right. The latter curve has (for wj distinct) 2N+1
branches, the branch through the origin intersecting each parabola twice
and each other branch intersecting each parabola once. Thus we obtain the
4N+4 intersections generically. In the case B=0 this number is halved as
the parabolae coincide. In addition it is possible for tangencies to occur.

–1

0

1

2

3

4

5

6

Ω
1

Ω
–1

ω

Ω
2

Ω
–2

Ω
3

Ω
–3

Ω
4

Ω
–4

 –3 3ω
1

ω
–1

Fig. 3. Gyroscopic system coupled to a heat bath of one oscillator (N=1) maintaining
stability. Stable coupling with a=−1, B=3, m1=1

4 , and w1=1. Note W1 < w1 which implies

that there are 8 real solutions. The dashed line is the graph of ;N
j=1 mj

w
2
j w

2

w
2 − w

2
j

while the solid
lines are the graphs of the parabolas (w ± 1

2 B)2 − (a+1
4 B2).
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Similar results follow in these nongeneric cases and we do not enumerate
them here.

We can therefore see the oscillator is stable if there exist 4N+4 real
frequencies which are solutions to the above Eq. (4.22). Complex solutions
lead to instability.

The precise results now follow simply from examining the number of
real intersections of the curves on the left and right sides of Eq. (4.22). For
all cases it is helpful to refer to Figs. 3–6 for the case N=1 and the case
N=2.

(i) Follows since the parabolae in this case have no zeros.

(ii) Holds since a > 0 guarantees that (4.22) has a full set of solutions.

(iii) Follows from computing the minimum of f(w) in the interval

(0, w1). Each parabola intersects the graph of ;N
j=1 mj

w
2
j w

2

w
2 − w2

j
between any

successive singularities, (wj, wj+1 ), for j \ 1, accounting for 4N real modes.

–1
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6

7

Ω
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ω

Ω
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Ω
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Ω
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Ω
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Ω
1 –4 4ω

1
ω

–1

Fig. 4. Destabilization of a gyroscopic system coupled to a heat bath of one oscillator
(N=1). Unstable coupling with a=−1, B=3, m1=2, and w1=1. Note W1 > w1 which

implies that there are only 4 real solutions. The dashed line is the graph of ;N
j=1 mj

w
2
j w

2

w
2 − w

2
j

while
the solid lines are the graphs of the parabolas (w ± 1

2 B)2 − (a+1
4 B2).
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Fig. 5. Stable gyroscopic system coupled to a heat bath of two oscillators (N=2). Stable
coupling with a=−1, B=6, m1=1, w1=1, m2=1

8 , and w2=4. Notice the system has 4N+4

stable normal modes if W1 < w1. The dashed line is the graph of ;N
j=1 mj

w
2
j w

2

w
2 − w

2
j

while the solid
lines are the graphs of the parabolas (w ± 1

2 B)2 − (a+1
4 B2).

However it is the number of modes that exist in [ − w−1, w1] which deter-
mines stability. Counting multiplicities, there are 4N+4 real modes if
W1 < w1 and only 4N real modes if W1 > w1. L

Remark. Gyroscopic Quantum Oscillators. The instability
results for the classical gyroscopic oscillator coupled to a heat bath can be
extended directly to the quantum setting. This follows from the general
quantization procedure for a classical system with quadratic Hamiltonian
and gyroscopic terms.

The point is that the eigenvalue computation for the equations of
motion in the classical setting is precisely equivalent to that for the
Heisenberg equations of motion. Thus for the oscillator coupled to the heat
bath the numerical computation in the classical case gives us the correct
eigenvalue information for the quantum case also and we can deduce
qualitative behavior as for the single gyroscopic oscillator in the previous
section. Thus, for sufficiently large coupling, we observe unbound states
even when the uncoupled gyroscopic oscillator exhibits bound states.
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Fig. 6. Gyroscopic system destabilized via coupling to a heat bath of two oscillators
(N=2). Stable coupling with a=−1, B=3, m1=1, w1=1, m2=1, and w2=4. Notice the
system has only 4N stable normal modes since W1 > w1. The dashed line is the graph of

;N
j=1 mj

w
2
j w

2

w
2 − w

2
j

while the solid lines are the graphs of the parabolas (w ± 1
2 B)2 − (a+1

4 B2).

The quantization of the uncoupled gyroscopic system illustrates that
the stability analysis of the quantum system is analogous to the classical
normal mode calculation. However there are some subtleties in the inter-
pretation of the stability analysis. We illustrate this briefly with a planar
oscillator with gyroscopic forces:

We follow the Dirac formalism as described in refs. 26 and 25 for
example.

In the case of a symmetric planar oscillator, we assume that a=b and
the Hamiltonian reduces to (w0=wx0

=wy0
)

H=(w0(a†
0a0+b†

0b0+1)+H̃B, (4.23)

H̃B=i
(B
2

(a†
0b0 − a0b†

0). (4.24)

By a standard change of coordinates we have a Hamiltonian in terms of
normal modes:
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A±=
1

`2
(a0 + ib0) (4.25)

A†
±=

1

`2
(a†

0 ± ib†
0). (4.26)

The eigenvalues of the Hamiltonian, En1, n2
can be shown to be

En1, n2
=(w0(n1+n2+1)+(

B
2

(n1 − n2), (4.27)

where n1, n2 ¥ {0, 1, 2,...}. In the case of gyroscopic stability, we have
B
2 > w0, and the energy spectrum is indefinite and unbounded above and
below. In the case of pure stability (a > 0), we have B

2 < w0, and the energy
spectrum in positive definite.

In the case of an unstable gyroscopic oscillator, (B
2+min{a, b} < 0),

there are no bound eigenstates.
Similary in the case of a quantum oscillator coupled to a finite heat

bath we can reduce the coupled problem to a system of independent
quantum oscillators. Thus the spectrum of the Hamiltonian of the coupled
quantum system is positive if and only if the classical system is strongly
stable; the spectrum is discrete with both postive and negative eigenvalues
if and only if the classical system is gyroscopically stable; and finally, we
have unbounded eigenfunctions if and only if the classical system in
unstable.

5. CONTINUUM COUPLING

The above analysis was for a gyroscopic oscillator connected to a finite
bath of discrete oscillators. It is of interest to investigate stability of the
oscillator coupled to a continuum of oscillators and to see what new phe-
nomena arise.

In the infinite setting dissipative effects, induced by coupling to the
continuum bath, become important. Moreover, such dissipative effects
induce instability as discussed for general gyroscopic systems in ref. 5. In
our setting suppose we have a Rayleigh dissipation so that the gyroscopic
oscillator equations become

ẍ − Bẏ+ax+cẋ=0

ÿ+Bẋ+by+cẏ=0
(5.1)
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where c > 0. Then the normal mode equation (4.22) becomes

(w ± 1
2 B)2 − (a+1

4 B2)=−icw (5.2)

or

w2+w(ic ± B) − a=0 (5.3)

which clearly has complex solutions in general and we obtain instability.
Now the natural limiting Lagrangian for our systems here is

L=L0+Lbath, (5.4)

where

L0=1
2 (ẋ2+ẏ2) − 1

2 (ax2+by2)+1
2 B(xẏ − yẋ) (5.5)

and

Lbath=F
R

( 1
2 m(u̇2+v̇2) − 1

2 mn2((u − x)2+(v − y)2)) dn. (5.6)

Here x(t) and y(t) are the distinguished oscillator coordinates and u(t, n),
v(t, n) denote continuum oscillator coordinates of natural frequency n.
Here m=m(n) is a mass density: m(n) dn/(> m(nŒ) dnŒ) denotes the propor-
tion of oscillators with natural frequency between nŒ and nŒ+dnŒ.

The corresponding equations of motion are

ẍ − Bẏ+ax=F
R

mn2(u − x) dn (5.7)

ÿ+Bẋ+by=F
R

mn2(v − y) dn (5.8)

F
R

m(ü+n2(u − x)) dn=0 (5.9)

F
R

m(v̈+n2(v − y)) dn=0. (5.10)

Assuming mass distributions with finite variance, the last two equation
become

ü+n2u=n2x (5.11)

v̈+n2v=n2y. (5.12)
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To obtain normal mode solutions, we set

x(t)=X0(w) e iwt; y(t)=Y0(w) e iwt (5.13)

u(n, t)=Xn(w) e iwt; v(n, t)=Yn(w) e iwt. (5.14)

The equations of motion for the normal modes become

(−w2+a) X0=− iBwY0+F
R

mn2(Xn − X0) (5.15)

(−w2+b) Y0=iBwX0+F
R

mn2(Yn − Y0) (5.16)

(−w2+n2) Xn=n2X0 (5.17)

(−w2+n2) Yn=n2Y0. (5.18)

Eliminating the bath coordinates, we have

|w2 − a+F
R

m
n2w2

n2 − w2 dn − iBw

iBw w2 − b+F
R

m
n2w2

n2 − w2 dn

} rX0

Y0

s=r0

0
s . (5.19)

For nontrivial solution, we require

1w2 − a+F
R

m
n2w2

n2 − w2 dn21w2 − b+F
R

m
n2w2

n2 − w2 dn2=B2w2. (5.20)

In the case where a=b, we can simplify the dispersion relation,

1w ±
1
2

B 22

−1a+
1
4

B22=F
R

m(n)
n2w2

w2 − n2 dn. (5.21)

This dispersion relationship in the infinite-dimensional setting requires
careful interpretation. As in the finite-dimensional setting the above analyis
is simply an analysis of the normal modes of the system. Any complex
frequencies will give to an instability. One way to interpret the integral in
the dispersion relation is the principle value sense. We then see that the
frequencies w which satisfy the dispersion relation form a discrete set. If m
decays fast enough for the principle value of integral to be finite, we have
only a finite number of real solutions. Increasing m from zero, the corre-
sponding solutions are the perturbed stable eigenvalues of the discrete
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Fig. 7. Continuum coupling to gyroscopic system. ‘‘Stable’’ coupling with a=−1, B=3,
and m(n)= 1

10 e−
|n|
2 . The dashed line is the graph of P.V. >

R
m n

2
w

2

w
2 − n

2 dn while the solid lines are
the graphs of the parabolas (w ± 1

2 B)2 − (a+1
4 B2).

system. If there are 4 real modes, then we consider the oscillator to be
stable. If there are fewer than 4 real modes, then the motion of the coupled
oscillator must include unstable modes. In Fig. 7, we see that there exist
enough stable modes to describe the motion of the oscillator. Increasing the
mass of the bath can lower the number of real modes. For example, Fig. 8
has no real modes and is hence unstable.
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ω

-5

5

10

15

20

25

Fig. 8. Continuum coupling to gyroscopic system. ‘‘Unstable’’ coupling with a=−1, B=3,
and m(n)=1

2 e−
|n|
2 . The dashed line is the graph of P.V. >

R
m n

2
w

2

w2 − n
2 dn while the solid lines are the

graphs of the parabolas (w ± 1
2 B)2 − (a+1

4 B2).

1092 Bloch et al.



On the other hand in the infinite setting it is possible to get a further
mechanism for instability—damping, as in the Rayleigh damped case
discussed above. In the infinite setting one can see this in the analysis of
the initial value problem, carried out for example by Laplace transform
analysis. The Fourier mode analysis imposes a time reversal symmetry and
cannot capture the damping revealed by a Laplace transform analysis as in
the case of Landau damping of plasmas (see, e.g., refs. 21 and 28). In
our setting the system is time reversible and each individual mode may be
stable or unstable. However, as in the Landau setting, a superposition of
infinitely many modes can damp as they drift out of phase, following the
argument of ref. 17. This damping effect leads to instability in the gyros-
copic setting even if the individual modes are stable.

We construct an instability as follows. We show that for E > 0 and
small there is a solution of

1w ±
1
2

B 22

−1a+
1
4

B22− E F
R

m(n)
n2w2

w2 − n2 dn=0, (5.22)

w=w(E) with negative imaginary part, Iw < 0 (so that e iwt grows as t
increases), and a corresponding finite energy normal mode (5.14).

Let

F(w, E) — 1w+
y1

2
B 22

−1a+
1
4

B22− E F
Cd

m(n)
n2w2

w2 − n2 dn=0, (5.23)

where y1=± 1 and Cd is a contour which coincides with the real axis,
traversed from − . to +. for |n| \ d and which, for |n| < d, consists of a
semicircular arc of radius d in the upper half plane.

Begin with any one of the four roots, wy1, y2
, of the unperturbed

problem, E=0:

wy1, y2
=

y1

2
B+

y2

2
1a+

1
4

B221/2

, y1, y2=± 1. (5.24)

Note that F(w, E) is analytic for w varying over the region below the
contour Cd and E ¥ R. Furthermore, F(wy1, y2

, 0)=0. Using the implicit
function theorem, we shall construct a solution of F(w, E)=0, with w(E)
near wy1, y2

and I(w(E)) < 0 for E near zero. Calculating, we find

Fw(w, E)=2 1w+
y1

2
B 2+2Ew3 F

Cd

m(n)
n2

(w2 − n2)2 dn

− 2Ew F
Cd

m(n)
n2

w2 − n2 dn (5.25)
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and therefore

Fw(wy1, y2
, 0)=y2(a+1

4 B2)
1
2 ] 0. (5.26)

It follows that for E sufficiently small, there is a function w(E), satisfying
F(w(E), E)=0. Differentiation gives:

dw

dE
(0)=− FE(wy1, y2

, 0) F−1
w (wy1, y2

, 0)

=−1y2
1a+

1
4

B22
1
2 2−1

FE(wy1, y2
, 0) (5.27)

and therefore the sign of the imaginary part of w(E), for small E, is deter-
mined by the sign of

FE(wy1, y2
, 0)=−w2

y1, y2
F

Cd

m(n)
n2

w2
y1, y2

− n2 dn, (5.28)

provided it is nonzero. By analyticity of the integrand in (5.28), we can
evaluate FE(wy1, y2

, 0) by taking letting d tend to zero. We obtain

FE(wy1, y2
, 0)=−w2

y1, y2
P.V. F

R
m(n)

n2

w2
y1, y2

− n2 dn+ipw3
y1, y2

m(wy1, y2
).

It follows that

I 1dw

dE
(0)2=− 1y2

1a+
1
4

B22
1
2 2−1

pw3
y1, y2

m(wy1, y2
),

which can be made negative for appropriate choice of y1 and y2. And
therefore, there exists a solution of F(w(E), E)=0 for E small with
I(w(E)) < 0. Finally, since I(w(E)) < 0 we may deform the contour Cd in
the definition of F(w, E) back to the real axis and we have that w(E)
actually solves the desired Eq. (5.22). The corresponding normal mode
(5.14) can be constructed algebraically and for mass-densities, m(n), which
decay sufficiently rapidly as n tends to infinity, is easily seen to have finite
energy. Thus as in the case of Rayleigh dissipation there is a complex root
generically which leads to instability.

6. RELATIONSHIP TO OTHER MODELS AND FINAL REMARKS

In this final section we discuss other models of coupling to a thermal
reservoir and their relationship to the stability analysis we have conducted
in this paper.
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One may for example consider an oscillator connected to an infinite
heat bath in the form of a string. We dicuss this briefly here. Further
details may be found in refs. 12 and 13.

One such model is based on the Lamb model (20) of an oscillator is
physically coupled to a string. The vibrations of the oscillator transmit
waves into the string and are carried off to infinity. Hence, the oscillator
loses energy and is effectively damped by the string.

Let w(x, t) be the displacement of the string at position x ¥ R at time t.
Let r be the mass density of the string and let T be the tension. We can
compute the wave speed of transverse oscillations of the free string to be
c=T

r . Assuming a singular mass density at x=0, we can couple the
dynamics of an oscillator, q, of mass M, to the otherwise free wave to
resolve the singularity,

“
2w

“t2 =c2 “
2w

“x2

Mq̈+Vq=T[wx]x=0

q(t)=w(0, t),

(6.1)

where `
V
M is the frequency of the uncoupled oscillating mass M and

[wx]x=0=wx(0+, t) − wx(0 − , t) is the jump discontinuity of the slope of
the string.

Perturbing the oscillator at time t=0 from its equilibrium position, we
can use d’Alembert’s solution to the wave equation to solve for w,

w=˛Ce (ct − |x|) w for |x| < ct,

0 for |x| > ct,
(6.2)

where w=− T
Mc+i `V2

M2 − ( T
Mc)2 and C is the size of the initial displacement.

For small tension we have damping and oscillator motion, while for large
tension, we have pure damping. From the solution of the wave equation,
we can compute the jump condition of the oscillator,

[wx]x=0=−2Cwewct=−
2
c

q̇. (6.3)

We obtain a reduced form of the dynamics describing the explicit motion
of the oscillator subsystem,

Mq̈+
2T
c

q̇+Vq=0. (6.4)
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The coupling term arises explicitly as a Rayleigh dissipation term 2T
c q̇ in the

dynamics of the oscillator. For the gyroscopic Lamb coupling, the dissi-
pation term will induce instabilities in gyroscopically stabilized Chetaev
systems.

A variant of the Lamb model, is a system which includes gyroscopic
terms coupled to the standard wave equation. We have the boundary con-
straint that the displacement of the gyroscopic oscillator fixes a point of the
string. One can show that this local coupling perturbation destabilizes
gyroscopically stabilized systems.

We consider a model of a string in Rn+1, whose transverse vibrations
are independent. Suppose the string lies initially along the xn+1-axis. For
simplicity, we denote the xn+1 dimension as the z dimension. Coupling the
transverse motion to a n-dimensional gyroscopic system, we can solve the
system

“
2w

“t2 (z, t)=c2 “
2w

“z2 (z, t), z ¥ R − {0}, t ¥ R,

Mq̈(t)+S q̇(t)+Vq(t)=T 5“w
“z
6

z=0

w(0, t)=q(t),

(6.5)

where c is the speed of transverse waves in the string, T is the tension of
the string, w=[w1(z, t) · · · wn(z, t)]T is the displacement of the string in the
first n dimensions and [ “w

“z ]z=0 is the jump discontinuity in the slope of the
string. Let us define the initial conditions on the string by w1(z)=“w

“t (z, 0),
and w0(z)=w(z, 0).

By direct computation we obtain an exact reduced dynamical system
for q. This reduction contains explicit dissipation terms reflecting the
oscillator/field coupling. The results on reduction and stability are sum-
marized in the following two results.

Proposition 6.1. If the initial data w0 and w1 have compact
support, then for ± ct ¨ supp(w0) 2 supp(w1) the oscillator dynamics of the
gyroscopic Lamb model reduces to

Mq̈(t)+1S+
2T
c
2 q̇(t)+Vq(t)=0. (6.6)
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A proof of this proposition may be found in ref. 13. In ref. 5, small
dissipation is shown to induce instability in gyroscopically stable systems
(see Theorem 3.2). In the gyroscopic Lamb model, radiation (energy trans-
fer into an infinite-dimensional system) produces a Rayleigh dissipation
term which depends on the tension of the string. Since dissipation induces
instability in these system for small dissipation, small tension coupling
yields radiation induced instability via an analogous mechanism. We
summarize the main result of radiation induced instability in gyroscopically
stabilized Chetaev systems with a theorem.

Theorem 6.2. If a gyroscopic mechanical system is gyroscopically
stable (i.e., V has a negative eigendirection), then local coupling via the
Lamb model induces instability for small coupling parameter T.

A related model is a field coupling of the mechanical gyroscopic
system to the wave equation.

We model force of the wave field on the Chetaev system by the mag-
nitude of the wave field. Coupling of this type is important in various
physical models—see refs. 29–31, and references therein. The interaction
between the wave equation and the gyroscopic system is modeled with a
coupling parameter o and with a coupling distribution q(t); the equations
of motion are

Mq̈+S q̇+Vq=o F
R

q(z) w(z, t) dz r 1
x

1

s ,

“
2w

“t2 − c2 “
2w

“z2 =oq(z) r 1
x

1

s
T

q.

(6.7)

Again one can show that instability is induced.
Other models of field coupling are also possible and of interest

depending on the physical situation of interest. We mention two further
models (ignoring gyroscopic forces):

One model is analyzed in ref. 33 who consider a Lagrangian for an
oscillator connected to a free field as follows:

L1=F 35ḟ2 −1“f

“x
226+d(x) 1 q̇2 − W2

0q2 − Eq
“f

“t
24 dt dx. (6.8)
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The equations of motion are (taking the mass to be unity)

(q̈+W2
0) q=−E

“f

“t
(0, t)

“
2f

“t2 −
“

2f

“x2=Eq̇d(x).

(6.9)

It is easy to see how damping arises in the model (6.9) and further-
more, see how the system decouples (see ref. 3 for related details):

Taking the Fourier transform with respect to x in the wave equation
yields

f̂(k, t)=F
R

e−ikxf(x) dx, (6.10)

f̂tt(k, t)+k2f̂(k, t)=Eq̇(t). (6.11)

Solving the o.d.e. for f̂, we have

f̂(k, t)=E F
t

0

sin(k(t − s))
k

q(s) ds+f̂free(k, t). (6.12)

The above equation is the retarded Green’s function for the wave equation
and ffree is the homogeneous solution satisfying the initial conditions.
Neglecting ffree, we have

f(0, t)=
E

2
F

t

0
sgn(t − s) q̇(s) ds (6.13)

=
E

2
F

t

0
q̇(s) ds. (6.14)

Thus we obtain

q̈+W2
0q=−

E2

2
q̇. (6.15)

If the free term is included one obtains an additional forcing term of − Eḟfree

on the right hand side.
Finally it is of interest to consider the model in ref. 19.
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In this case one has a scalar wave field f(x) in three dimensions
coupled to a particle with position q. Ignoring relativistic effects the
Lagrangian is of the form

L2=
1
2

q̇2+
1
2

F d3x 11“f(x, t)
“t

22

− |Nf(x, t)|22+F d3x f(x, t) r(x − q).
(6.16)

In ref. 19 r(x) is chosen to ensure the energy is bounded from below.
We note also the difference between this model and the model (6.7). Here
the model is that of oscillator coupled to a scalar field in three dimensions
while the model (6.7) is that of an oscillator system coupled via a coupling
parameter to n copies of a scalar field of one dimension. This latter model
is of interest for analysis of resonances in quantum systems (see ref. 31)
while the model of ref. 19 is of interest for certain physical models of a
particle interacting with a field.
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